Ute Schmid (1998) Bottom-up and Top-down Processes in Learning
. Psycoloquy: 9(76) Efference Knowledge (4)
Versions: ASCII formatted
Psycoloquy 9(76): Bottom-up and Top-down Processes in Learning
BOTTOM-UP AND TOP-DOWN PROCESSES IN LEARNING
Commentary on Jarvilehto on Efference-Knowledge
Ute Schmid
Department of Computer Science
Technical University Berlin
Franklinstr. 28
D-10587 Berlin
+49 (0)30/314-23938 FAX -24941
http://ki.cs.tu-berlin.de/~schmid
schmid@cs.tu-berlin.de
Abstract
The physiological processes of afferent transmission of
receptor activities to the central nervous system and of efferent
influences from the central nervous system on receptors correspond
roughly to the notion of bottom-up and top-down processing in
cognitive and AI models. I will discuss the role of bottom-up and
top-down processes in approaches to knowledge acquisition and
(machine) learning and their relation to theory and findings in
physiology.
Keywords
afference, artificial life, efference, epistemology,
evolution, Gibson, knowledge, motor theory, movement, perception,
receptors, robotics, sensation, sensorimotor systems, situatedness
References
- Anderson, J. R. (1986), Knowledge compilation: A general learning mechanism. In: R. S. Michalski, J. G. Carbonell and T. M. Mitchell (Eds.), Machine Learning -- An Artificial Intelligence Approach (vol. 2, pp. 289-310). Morgan Kaufmann.
- Chomsky, N. (1968). Language and Mind. New York: Harcourt, Brace Jovanovich.
- Dean, T., Basye, K. & Shewchuk, J. (1993). Reinforcement learning for planning and control. In: S. Minton (Ed.), Machine Learning Methods for Planning (pp. 67-92). Morgan Kaufmann.
- Freivalds, R., Kinber, E. & Smith C. H. (1997). The functions of finite support: a canonical learning problem. Proceedings of the 19th Annual Conference of the Cognitive Science Society (pp. 235-240), Hillsdale, NJ: Lawrence Erlbaum.
- Hanson, S. J., Drastal, G. A. & Rivest, R. L. (1994). Computational Learning Theory and Natural Learning Systems. Cambridge, MA: MIT Press.
- Jarvilehto, T. (1998d) Efferent influences on receptors in knowledge formation. Psycoloquy 9(41) http://www.cogsci.soton.ac.uk/cgi/psyc/newpsy?9.41 ftp://ftp.princeton.edu/pub/harnad/Psycoloquy/1998.volume.9/psyc.98.9.41.efference-knowledge.1.jarvilehto
- Milner, P. (1993). The mind and Donald O. Hebb, Scientific American, 268 (1), 124-129.
- Mitchell, T. (1997). Machine Learning. New York: McGraw Hill.
- Piaget, J. (1954). The Child's Construction of Reality. New York: Basic Books.
- Quinlan, J.R. (1986). Induction of decision trees, Machine Learning, 1 (1), 81-106.
- Rosenbloom, P. S. & Newell, A. (1986). The chunking of goal hierarchies: A generalized model of practice. In R. S. Michalski, J. G. Carbonell and T. M. Mitchell (Eds.), Machine Learning -- An Artificial Intelligence Approach (vol. 2, pp. 247-288). Morgan Kaufmann.
- Rumelhart, D. E. & Norman, D. A. (1978). Accretion, tuning and restructuring: Three modes of learning. In J. W. Cotton and R. L. Klatzky (Eds.), Semantic Factors in Cognition (pp. 37-53). Hillsdale, NJ: Lawrence Erlbaum.
- Schmid, U. & Wysotzki, F. (1998a). Induction of recursive program schemes, In C. Nedellec and C. Rouveirol (Eds.), Proceedings of the 10th European Conference on Machine Learning (pp. 228-240), LNAI 1398. Springer.
- Schmid, U. & Wysotzki, F. (1998b). Skill acquisition can be regarded as program synthesis: An integrative approach to learning by doing and learning by analogy. In U. Schmid, J. Krems and F. Wysotzki (Eds.), Mind Modelling -- A Cognitive Science Approach to Reasoning, Learning and Discovery. Lengerich: Pabst Science Publishers.